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a common aldehyde, benzaldehyde, to minimize the changes 
in reaction variables, we have found our observations to be 
general. For example, the (Z)-dibutylboron enolate derived 
from 3-pentanone affords cleanly the erythro-aldol adducts 
with «-butyraldehyde, isobutyraldehyde, crotonaldehyde, and 
methacrolein.15 

The generality of these reactions and the application of 
chiral boron enolates to enantioselective aldol condensations 
will be reported in due course. 
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Annuiated Pyranosides as Chiral Synthons for 
Carbocyclic Systems. Enantiospecific Routes to 
Both (+)- and (-)-Chrysanthemumdicarboxylic Acids 
from a Single Progenitor 

Sir: 

There is currently considerable interest in the use of car­
bohydrate derivatives as chiral synthons as may be judged from 
the growing number of synthetic accomplishments in recent 
years.' These accomplishments fall largely into two categories 
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for which we have suggested2 the terms (a) acyclic transfer and 
(b) cyclic transfer to denote the manner in which the carbo­
hydrate moiety has been employed. A third category, (c) 
transcription, may be recognized1'8 which is particularly ap­
plicable to carbocyclic compounds, and, in this context, it is 
noteworthy that Stork's synthesis of the prostaglandins9 is the 
only instance, to our knowledge, where a carbocyclic natural 
product has been synthesized from a sugar.10 

In this communication, we introduce the novel concept of 
annuiated pyranosides as chiral synthons for carbocyclic sys­
tems, and exemplify the potential of this methodology by 
outlining the enantiospecific syntheses of (+)- and (—)-
chrysanthemumdicarboxylic acids (1) from a single precursor, 
whereby all stereochemical centers of the target are of known, 
predetermined configuration by "transcription" from the 
carbohydrate template. A significant aspect of this work is that 
it makes provision for preparing chrysanthemates with iso-
topic labels at a variety of specific sites. 

In the context of this project, the key structural feature is 
the gew-dimethylcyclopropane ring, and, of the many 
routes12 l4 which we and others have developed to cyclopro-
/xr/no-pyranosides, the one chosen for initial study is that 
summarized in Scheme 1. Thus, the photoinduced alkylation 
of cnone 2 with methanol gave the ketol 3a which was con­
verted into 4a in excellent yield.13 For the synthesis of 4b, the 
tertit'.ry alcohol 3b was obtained in 87% yield by alkylation of 
2 with 2-propanol. However, all attempts15 to bring about 
cyclization 3b'6 —• 4b met with abject failure. 

We next turned our attention to the carboethoxy cyclopro­
pane 7a, first prepared by Meyer zu Reckendorfl4a and studied 
further by us. l 4 b Attempts to a-methylate 7a were unsuc­
cessful. We therefore examined the reaction of 5 with the 
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propionate 6b, but with some reluctance since Denney had 
reported that, unlike the acetate 6a, the propionate 6b did not 
react with oxiranes to give cyclopropanes. However, unstinting 
experimentation was rewarded with a procedure18 which gave 
54% 7b'6 after chromatography. In spite of this comparatively 
low yield, scrupulous searching failed to reveal any identifiable 
product in the detritus of the reaction thereby establishing that 
7b was the only stereoisomer formed. The endo location of the 
methyl group was deduced by irradiating the methyl signal at 
1.38 ppm whereupon an NOE (10%) was detected for H-I. 

The most satisfactory route to the gem-dimethyl derivative 
7e, proved to be reduction of 7b to the alcohol 7c (LiAlH4, 
Kt2O, 23 0C, 97%), chlorination19 to 7d16 (DMF, CH3SO2Cl, 
23 0 C, 92%), and again reduction to 7e16 (LiAlH4, THF, re­
flux, 89%). 

As was expected, the hydrolysis of the anomeric acetal of 
7e giving the hydroxy aldehyde 8'6 occurred readily20-21 under 
neutral conditions (H20-dioxane, reflux, 1.5 h, 98%). That 
ihis treatment had not caused concomitant epimerization at 
C-2 was established by treating 8 with sodium methoxide (23 
0 C, 1 2 h) whereupon a new aldehyde was obtained in quanti­
tative yield. The latter was assigned as the thermodynamicaUy 
preferred trans isomer 9, and, although both 8 and 9 had the 
same mobility in TLC, the difference was apparent in the 
doublets for H-I (9.45 and 9.32 ppm, respectively). 

Reaction of 8 with 1.1 equiv of Ph 3 P=C(CH 3 )CO 2 CH 3 in 
CH2Cl2 (23 0 C, 1.5 h) afforded 1016 in 93% yield after chro­
matography. This assignment of structure follows from the 
known stereochemistry of these reactions,22 and the failure to 
detect the other Z isomer in the mother liquors. Since the re­
agent is neutral, epimerization of the aldehyde should not 

occur—and this is subsequently shown to be true (Scheme 
H). 

Hydrolysis of the benzylidene ring (MeOH, TsOH, 23 0 C, 
5 h) followed by cleavage with sodium metaperiodate gave l l 1 6 

in 84% overall yield, and epimerization (NaOMe, MeOH, 
room temperature, 12 h) gave 12a16 quantitatively. The signals 
for the aldehydic protons (9.60 and 9.50 ppm, respectively) 
readily differentiated 11 from 12a. 

Oxidation of the aldehyde in alkaline solution (Ag2O, 
NaOH, H2O, dioxane) was complete within 10 min at 23 0 C 
giving pyrethric acid (12b). However, the mixture was nor­
mally allowed to stand for 4 h, whereupon chrysanthemum-
dicarboxylic acid ( (+) - l ) was obtained in 89% overall yield. 
The physical constants (Scheme II) were identical with those 
of an authentic sample.23 

The isolation of the dextrorotatory enantiomer of 1 con­
firmed our earlier assignment of the aldehydes 8 and 9. 
However that epimerization had been undertaken for reasons 
other than structure elucidation. Thus, isomer 9 could be 
transformed into the other enantiomer ( - ) - l by exactly the 
same sequence of reactions—with the exception of the epi­
merization at the penultimate stage. There were only minor 
differences as, for example, the formation of some of the Z 
isomer corresponding to 13. 

With the exception of the initial cyclopropanation, giving 
7b, all reactions are seen to proceed in excellent yields. Thus, 
the nine steps from 7b to (+)-l and ( - ) - l occur in 55 and 45% 
overall yield, respectively. 

The mode of formation of the gem-dimethyl function in 7e 
(Scheme I) indicates that the exo-methyl group can be spe­
cifically tagged with a variety of labels (e.g., CT3, CD2T, 
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CH2D, CT2H, etc.) depending on the reagent used (LiAlH4, 
LiAlD4, or LiAlT4) in the two reduction steps. Thus, the 
(pro-S)-methyl group of (+)- l may be specifically identified. 
Furthermore, reduction of the ester of 10 to a methyl group 
could yield chrysanthemic acid labeled at that geometric site. 
Alternatively the "other" methyl groups in 7e and 10 could be 
labeled by using the suitably labeled propionates for the re­
action with 5. In addition, the epimerization H - * 12a allows 
for the introduction of hydrogen isotopes at C-2 of (+)- l . Thus, 
multiple labels may be introduced into the chrysanthemate 
esters, the locations of which are known by "transcription" 
from the original sugar template. 
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The Carboranylcarbene Rearrangement1 

Sir: 

The interconversion of substituted phenylcarbenes in the gas 
phase reveals itself through intramolecular trapping.2 For 
instance, /Molylcarbene gives benzocyclobutene and styrene 
through a series of intramolecular rearrangements passing over 
the meta and ortho isomers. 

The analogy between benzene and the icosahedral carbo-
ranes (dicarba-c/o.sododecaborane(12)s) has been often 
made.3 It occurred to us that a question worth probing was the 
extent of stabilization conferred on a divalent carbon by an 
adjacent carborane polyhedron. To what extent would the 
reactions of phenylcarbene and diphenylcarbene be mimicked 
by those of carboranylcarbene and dicarboranylcarbene? How 
similar would the three-dimensional carborane cage com­
pounds be to their more classically "two-dimensional",aromatic 
relatives?411 Although we are currently investigating inter-
molecular solution chemistry,4b we also conceived of examining 
the ability of the carborane cage to act as a conduit for the 
passage of divalent carbon from one position to another, much 
as does a benzene ring.2'5 It is this reaction that we report 
here. 

The required diazo compound 3c was produced most con­
veniently from 1-vinyl-o-carborane ( I ) 6 by a sequence in­
volving methylation to give l-vinyl-2-methyl-o-carborane (2) 
and ozonolysis to give aldehyde 3a which could be converted 
in unexceptional steps into the tosylhydrazone salt 3b. Dry 
distillation at 60-100 0 C (0.05 Torr) yielded diazo compound 
3c (diazo band, 2080; B-H, 2590 cm"1). 
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